LIBERTY PAPER SET

STD. 10 : Mathematics (Basic) [N-018(E)]

Full Solution

Time: 3 Hours

ASSIGNTMENT PAPER 6

Section-A

1. (B) 11 x - 9 **2.** (B) $\sqrt{x^2 + y^2}$ **3.** (D) 28 **4.** (B) 12 **5.** (C) sec θ **6.** (A) 5.5 **7.** 3 **8.** 0 **9.** 1 **10.** 9 **11.** 2 **12.** 35 **13.** True **14.** True **15.** False **16.** False **17.** -2 **18.** 8 **19.** $\frac{2}{5}$ **20.** 0 **21.** $\frac{1}{4}\pi r^2$ **22.** 60° **23.** (c) $l \times b \times h$ **24.** (b) 2(lb + bh + hl)

Section-B

25. We have quadratic equation $ax^2 + bx + c$ with α and β as its zeroes.

 $\alpha + \beta = 0$ & $\alpha \cdot \beta = -3$ is given

$$\therefore -\frac{b}{a} = 0 \qquad \qquad \frac{c}{a} = -3$$
$$\therefore \frac{-b}{a} - \frac{0}{1} \qquad \qquad \frac{c}{a} = \frac{-3}{1}$$

then a = 1, b = 0, c = -3

So we can get equation,

 $x^2 + 0x - 3 = x^2 - 3.$

So for each real root in form of k, $k(x^2 - 3)$ is required equation.

26. $P(x) = x^2 - 5 x + 6$

 $\therefore a = 1, b = -5 \text{ and } c = 6$

Sum of the zeroes = $-\frac{b}{a} = -\frac{-5}{1} = 5$

Product of the zeroes $\frac{c}{a} = \frac{6}{1} = 6$

- **27.** $2x^2 6x + 3 = 0$
 - $\therefore a = 2, b = -6 \text{ and } c = 3$
 - :. $b^2 4ac = (-6)^2 4(2)(3) = 36 24 = 12$

Here $b^2 - 4ac > 0$, therefore, there are distinct real roots exist for given equation.

Now,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\therefore x = \frac{-(-6) \pm \sqrt{12}}{2 \times 2}$$
$$\therefore x = \frac{6 \pm 2\sqrt{3}}{4}$$
$$\therefore x = \frac{3 \pm \sqrt{3}}{2}$$

Therefore, roots of given equation : $\frac{3+\sqrt{3}}{2}$, $\frac{3-\sqrt{3}}{2}$

28. The number of rose plants in the 1st, 2nd, 3rd,..... rows are : 25, 23, 21,, 5 In the form of AP :

5

$$a = 25, d = 23 - 25 = -2, a_n =$$
Now, $a_n = a + (n - 1) d$

$$\therefore 5 = 25 + (n - 1) (-2)$$

$$\therefore 5 = 25 - 2 n + 2$$

$$\therefore 2 n = 25 + 2 - 5$$

$$\therefore 2 n = 22$$

$$\therefore n = 11$$

So, there are 14 rows in the flower bed.

29.
$$a = -10, d = -5 - (-10) = 5, n = 10$$

 $Sn = \frac{n}{2} [2a + (n - 1)d]$
 $\therefore S_{10} = \frac{10}{2} [2(-10) + (10 - 1)(5)]$
 $\therefore S_{10} = 5[-20 + (9)(5)]$
 $\therefore S_{10} = 5(-20 + 45)$
 $\therefore S_{10} = 5(25)$
 $\therefore S_{10} = 125$
So, sum of first 10 terms is 125.

30. AB =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(2+3)^2 + (3+9)^2}$
= $\sqrt{25+144}$
= $\sqrt{169}$
= 13

Threfore, the distance between the given points is 13.

31. Let, a point on the y-axis is of the form (0, y). So, let the point M(0, y) be equidistant from P and Q.

bert

$$\therefore PM = MQ$$

- $\therefore PM^2 = MQ^2$
- $\therefore (6-0)^2 + (5-y)^2 = (-4-0)^2 + (3-y)^2$
- $\therefore 36 + 25 10y + y^2 = 16 + 9 6y + y^2$
- $\therefore 36 + 25 16 9 = 10y 6y$

$$\therefore 4y = 36$$

$$\therefore y = 9$$

So, the required point is (0, 9).

32. $2tan^245^\circ - cos^230^\circ + sin^260^\circ$

$$= 2(1)^{2} - \left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}$$
$$= 2(1) - \frac{3}{4} + \frac{3}{4}$$
$$= 2$$

33. А в C $sin A = \frac{3}{4}$ In right angled \triangle ABC, \angle B = 90° $sin A = \frac{BC}{AC} = \frac{3}{4}$ $\therefore \frac{BC}{3} = \frac{AC}{4} \quad k, \ k = Positive Real Number$ \therefore BC = 3k, AC = 4k According to pythagoras $AB^2 = AC^2 - BC^2$:. $AB^2 = (4k)^2 - (3k)^2$ $\therefore AB^2 = 16k^2 - 9k^2$ $\therefore AB^2 = 7k^2$ \therefore AB = $\sqrt{7} k$ $\therefore \quad \cos \mathbf{A} = \frac{\mathbf{AB}}{\mathbf{AC}} = \frac{\sqrt{7} \, k}{4k} = \frac{\sqrt{7}}{4}$ $\tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}}$ 34. t 0 w e r 30 В **60** m C Here in $\triangle ABC$, $\angle B = 90^{\circ}$ $\therefore \quad tan \ 30^\circ = \ \frac{AB}{BC}$

ert

$$\therefore \quad \frac{1}{\sqrt{3}} = \frac{AB}{60}$$
$$\therefore \quad \frac{60}{\sqrt{3}} = AB$$
$$\therefore \quad \frac{20 \times 3}{\sqrt{3}} = AB$$
$$\therefore \quad AB = \frac{20 \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}}$$

$$\therefore AB = \frac{20 \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}}$$
$$\therefore AB = 20\sqrt{3} m$$

So, the height of the tower is $20\sqrt{3}$ m

35. $l = 2 \times 5 = 10$ cm

b = 5 cm, h = 5 cm

Curved surface area of cuboid

$$= 2(lb + bh + hl)$$

= 2[(10 × 5) + (5 × 5) + (5 × 10)]
= 2[50 + 25 + 50]
= 2(125)
= 250 cm²

36. Hemisphere Cone

r = 1 cm r = 1 cm

$$h = r = 1 \text{ cm}$$

Volume of solid = Volume of hemisphere + Volume of cone

$$= \frac{2}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h$$

= $\frac{1}{3}\pi r^{2}(2r + h)$
= $\frac{1}{3} \times \pi \times (1)^{2} \times [(2 \times 1) + 1]$
= $\frac{1}{3} \times \pi \times 1(2 + 1)$
= $\frac{1}{3} \times \pi \times 3$
= $\pi \text{ cm}^{3}$

Hence, the volume of the solid is π cm³.

37. Here, the maximum class frequency is 7 and the class corresponding to this frequency 40 - 55.

ert

So, the modal class is 40 - 55.

$$\therefore l = 40, h = 15, f_1 = 7, f_0 = 3, f_2 = 6$$
Mode $Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$

$$\therefore Z = 40 + \left(\frac{7 - 3}{2(7) - 3 - 6}\right) \times 15$$

$$= 40 + \frac{4 \times 15}{5}$$

$$= 40 + 12$$

$$= 52$$

$$2x + 3y = 7 \qquad \dots (1)$$

$$3x - 4y = 2 \qquad \dots (2)$$

Multipy $eq^{n}(1)$ by 4 and $eq^{n}(2)$ by 3 and add them,

$$8x + 12y = 28$$

$$+ 9x - 12y = 6$$

$$\therefore 17x = 34$$

$$\therefore x = 2$$

38.

put x = 2 in eqⁿ (1) 2x + 3y = 7 $\therefore 2(2) + 3y = 7$ \therefore 4 + 3y = 7 $\therefore 3y = 3$ $\therefore y = 1$ The Solution of the equation : x = 2, y = 1**39.** Let, the larger no = x, smaller no = y. $\therefore x + y = 18$...(1) x - y = 2...(2) Add (1) & (2), x + y = 18x - y = 2 $\therefore 2x = 20$ $\therefore x = 10$ Put x = 10 in $eq^{n}(1)$, bert 10 + y = 18 $\therefore y = 18 - 10$ $\therefore y = 18 - 10$ $\therefore y = 8$ Largen no = 10Smaller no = 8**40.** Here, $a_2 = a + d = 14$ and $a_3 = a + 2d = 18$. $\therefore a + d = 14$ a + 2d = 18_____ $\therefore -d = -4$ $\therefore d = 4$ Put d = 4 in a + d = 14a + d = 14 $\therefore a + 4 = 14$ $\therefore a = 14 - 4$ $\therefore a = 10$ Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{51} = \frac{51}{2} [2(10) + (51 - 1)4]$ *.*:. $=\frac{51}{2}$ [20 + 200] $=\frac{51}{2}$ × 220 $= 51 \times 110$ *:*.. S₅₁ = 5610

41. Suppose, A (1, 2), B (4, y), C (x, 6) and D (3, 5) are the vertices of parallelogram ABCD.

Co-ordinates from the midpoint of the diagonal AC

= Co-ordinates from the midpoint the diagonal BD.

$$\therefore \left(\frac{1+x}{2}, \frac{2+6}{2}\right) = \left(\frac{4+3}{2}, \frac{y+5}{2}\right)$$

$$\therefore \frac{1+x}{2} = \frac{4+3}{2} , \frac{2+6}{2} = \frac{y+5}{2}$$

$$\therefore 1+x=7 , 8=y+5$$

$$\therefore x=7-1 , y=8-5$$

$$\therefore x=6 , y=3$$

42. Suppose, the line dividing the line segment AB connecting A (-1, 7) and B (4, -3) in the ratio $m_1 : m_2 = 2 : 3$ is P. The co-ordinate of point

$$P = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
$$= \left(\frac{2(4) + 3(-1)}{2 + 3}, \frac{2(-3) + 3(7)}{2 + 3}\right)$$
$$= \left(\frac{8 - 3}{5}, \frac{-6 + 21}{5}\right)$$
$$= (1, 3)$$

Therefore, the co-ordinates of the required point are given by (1, 3

In \triangle OPA; $\angle P = 90^{\circ}$

Applying Pythagoras Theorem,

 $OA^2 = OP^2 + PA^2$

- $\therefore PA^2 = OA^2 OP^2$
- $\therefore PA^2 = (12)^2 (5)^2$
- :. $PA^2 = 144 25$
- $\therefore PA^2 = 119$
- \therefore PA = $\sqrt{119}$ m

44. Given : A circle with centre O, a point P lying outside the circle with two tangents PQ, PR on the circle from P. To prove : PQ = PR

Proof : Join OP, OQ and OR. Then \angle OQP and \angle ORP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OQP and ORP,

OQ = OR(Radii of the same circle)OP = OP(Common) $\angle OQP = \angle ORP$ (Right angle)

Therefore, $\Delta \text{ OQP} \cong \Delta \text{ ORP}$ (RHS)

This gives, PQ = PR (CPCT)

45. Here we get the information as shown in the table below using a = 225 and h = 50 to use the deviation method.

Daily expenditure (in ₹)	(f _i)	<i>x</i> _i	$\frac{u_{i}}{\frac{x_{i}-a}{h}}$	$f_i u_i$	
100 - 150	4	125	- 2	- 8	
150 – 200	5	175	- 1	- 5	
200 – 250	12	225 = <i>a</i>	0	0	
250 – 300	2	275	1	2	
300 - 350	2	325	2	4	
Total	$\Sigma f_i = 25$	_	-	$\Sigma f_i u_i = -7$	

Mean
$$\overline{x} = a + \frac{\Sigma f_i u_i}{\Sigma f_i} \times h$$

 $\therefore \ \overline{x} = 225 + \frac{-7}{25} \times 50$
 $\therefore \ \overline{x} = 225 - 14$
 $\overline{x} = 211$

So, mean daliy expenditure on food is ₹ 211.

46. Total number of plates = 90.

(i) Suppose event A of inscribed two digit number. (10 to 90 = 81)

$$\therefore P(A) = \frac{\text{Total number of two digit number}}{\text{Total number of outcomes}}$$
$$\therefore P(A) = \frac{81}{90} = \frac{9}{10} = 0.9$$

(ii) Suppose event B of inscribed perfect square number. (1, 4, 9, 16, 25, 36, 49, 64, 81 = 9)

$$\therefore P(B) = \frac{\text{Total number of perfect square}}{\text{Total number of outcomes}}$$
$$\therefore P(B) = \frac{9}{90} = \frac{1}{10} = 0.1$$

(iii) Suppose event C of inscribed a number divisible by 3. $(3, 6, 9, \dots, 90 = 30)$

$$\therefore P(C) = \frac{\text{Total number of number of divisible by 3}}{\text{Total number of outcomes}}$$
$$\therefore P(C) = \frac{30}{90} = \frac{1}{3}$$

3.6 cm D 1.8 cm 2.4 cm В С $\frac{AD}{DB} = \frac{AE}{EC}$ (Theoren – 6.1) $\therefore \quad \frac{3.6}{2.4} = \frac{AE}{1.8}$ $\therefore \text{ AE} = \frac{3.6 \times 1.8}{2.4}$ \therefore AE = 2.7 cm Now, A - D - B $\therefore AB = AD + DB$ ert $\therefore AB = 3.6 + 2.4$ $\therefore AB = 6 cm$ В 48. Μ Ν D In \triangle ABC, A–M–B & A–L–C also LM || CB. $\therefore \frac{AM}{AB} = \frac{AL}{AC}$ (theorem : 6.1) In \triangle ADC, A–L–C and A–N–D also LN || CD. $\therefore \quad \frac{AL}{AC} = \frac{AN}{AD} \text{ (theorem : 6.1)}$ From equation (i) and (ii), we get, $\frac{AM}{AB} = \frac{AN}{AD}$ 49. Suppose, Jayesh's present age is x years. Three years ago, his age is (x - 3) years. Inverse of his three years ago age is $\frac{1}{x-3}$ years. Five years from present age is (x+5) years.

Inverse of this age is $\frac{1}{x+5}$ years.

Sum of Inverse of age three years ago and Inverse of age give years from present years is $\frac{1}{3}$.

...(i)

...(ii)

8

47.

 $\therefore \frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$ \therefore 3 (x + 5) + 3 (x - 3) = (x - 3) (x + 5) $\therefore 3x + 15 + 3x - 9 = x^2 + 2x - 15$ $\therefore 6x + 6 = x^2 + 2x - 15$ $\therefore x^2 + 2x - 15 - 6x - 6 = 0$ $\therefore x^2 - 4x - 21 = 0$ $\therefore x^2 - 7x + 3x - 21 = 0$ $\therefore x (x - 7) + 3 (x - 7) = 0$ $\therefore (x-7)(x+3) = 0$ $\therefore x - 7 = 0 \text{ and } x + 3 = 0$ $\therefore x = 7$ and x = -3But x = -3 is not possible $\therefore x = 7$ Therefore, Jayesh's present age is 7 years. Simple Interest = $\frac{P \times R \times N}{100}$ 50. So, the interest at the end of the 1st year, = $\frac{1000 \times 8 \times 1}{100}$ The interest at the end of the 2nd year = $\frac{1000 \times 8 \times 2}{100}$ The interest at the end of the 3^{rd} year = $\frac{1000 \times 8 \times 3}{100}$ 240 So, the interest at the end of the 1st, 2nd, 3rd.... years, respectively are 80, 160, 240, Here, $d_1 = 160 - 80 = 80$ $d_2 = 240 - 160 = 80$ i.e. common difference d = 80 and it is AP. Also a = 80. So, the interest at the end of 30 years,

$$a_{30}$$
 = $a + (n - 1)d$
= $80 + (30 - 1) 80$
= $80 + 2320$
= ₹ 2400

So, the interest at the end of 30 years will be ₹ 2400.

51.

Class	Frequency	Cumulative frequency
0 - 10	5	5
10 - 20	8	5 + 8 = 13
20 - 30	20	13 + 20 = 33
30 - 40	15	33 + 15 = 48
40 - 50	7	48 + 7 = 55
50 - 60	5	55 + 5 = 60

n = 60
n = 60,
$$\frac{n}{2}$$
 = 30,
Here 30 lies with in *cf* value 33.
∴ class = 20 - 30, $l = 20$
cf = 13, *f* = 20, *h* = 10
Median M = $l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$
= 20 + $\left[\frac{30 - 13}{20}\right] \times 10$
= 20 + $\frac{7 \times 10}{20}$
= 20 + $\frac{7}{2}$
= 20 + 3.5
M = 23.5

Median of given data is 23.5.

52.

	C					
	Class	Frequency	Cumulative frequency			
	1 – 4	6	6			
	4 – 7	а	6 + <i>a</i>			
	7 – 10	40	6 + a + 40 = 46 + a			
	10 - 13	16	46 + a + 16 = 62 + a			
	13 – 16	Ь	62 + a + b			
	16 – 19	4	62 + a + b + 4 = 66 + a + b			
		<i>n</i> = 100				
Here, $n = 100$ $\therefore \frac{n}{2} = \frac{100}{2} = 50$						
	$\therefore a+b+66 = 100 \text{ is must}$					
$\therefore a+b=100-66$						

$$\therefore a + b = 34$$

... (1)

We have, M = 8.05 which is between 7 - 10.

$$\therefore l = 7, cf = 6 + a, f = 40, h = 3$$

$$M = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

$$\therefore 8.05 = 7 + \left[\frac{50 - (a + 6)}{40}\right] \times 3$$

$$\therefore 8.05 - 7 = \left[\frac{50 - a - 6}{40}\right] \times 3$$

$$\therefore 1.05 = \left(\frac{44 - a}{40}\right) \times 3$$

$$\therefore \frac{1.05 \times 40}{3} = 44 - a$$
10

 $\therefore \frac{105 \times 40}{100 \times 3} = 44 - a$ $\therefore \frac{35 \times 4}{10} = 44 - a$ $\therefore \frac{140}{10} = 44 - a$ $\therefore 14 = 44 - a$ $\therefore a = 44 - 14$ $\therefore a = 30$ Put a = 30 in result (1), a + b = 34 $\therefore b = 34 - 30$ $\therefore b = 4$

So, a = 30 & b = 4 for given data.

53. Total number of possible outcomes = 36.

(i) The outcomes possible to the event multiplying of the two numbers is 6' denoted by A = 4 [(1, 6), (2, 3), (3, 2), (6, 1)]

∴ P(A) =
$$\frac{4}{36} = \frac{1}{9}$$

∴ P(A) = $\frac{81}{90} = \frac{9}{10} = 0.9$

(ii) The outcomes possible to the event multiplying of the two numbers is 12' denoted by B = 4 [(2, 6), (3, 4), (4, 3), (6, 2)]

:
$$P(B) = \frac{4}{36} = \frac{1}{9}$$

(iii) The outcomes possible to the event multiplying of the two numbers is 10' denoted by C = 2 [(2, 5), (5, 2)]

$$\therefore P(C) = \frac{2}{36} = \frac{1}{18}$$

(iv) There is not outcomes possible to the event D is, multiplying of the two numebr of 7.

$$\therefore P(D) = \frac{0}{36} = 0$$

- **54.** Total number of roses = 5 + 2 + 3 = 10
 - (i) Suppose event A is selected rose is red.

$$\therefore P(A) = \frac{\text{Number of red roses}}{\text{Total Number of roses}}$$
$$\therefore P(A) = \frac{5}{10} = 0.5$$

(ii) Suppose event B is selected rose is yellow.

$$\therefore P(B) = \frac{\text{Number of yellow roses}}{\text{Total Number of roses}}$$
$$\therefore P(B) = \frac{2}{10} = 0.2$$

(iii) Suppose event C is selected rose is white.

$$\therefore P(C) = \frac{\text{Number of white roses}}{\text{Total Number of roses}}$$
$$\therefore P(C) = \frac{3}{10} = 0.3$$

(iv) Suppose event D is selected rose is non-white. So, event D is complementary event C.

$$\therefore P(D) = 1 - P(C)$$

 \therefore P(D) = 1 - 0.3 = 0.7